some answers to the talk - next steps

10/01

questions

- what we have to adress :
 - if D0 mix sample can be compared with real data (ie #D0's per event)
 - number of events used, D0's found when we run the macro
 - Efficiency of Silicon hits: basically plot inv. mass with and without Si hits
 - do a direct fit (polynomial or exponential) instead of the rotation
 - improve dEdx cuts

next steps

- dca cut :
 - for this, plot $\sigma_{dca}^{xy,z}$ for positive and negative daughter vs momentum
 - \Rightarrow apply a cut on \triangle dca = dca_{pos} -dca_{neg} and apply a cut based on $\sigma_{dca}^{xy,z}$ (see next slide)
- apply defaults cuts (phi,eta,NTpchits) and fixed them because TNuple has a huge size

Distance of Closest Approach

- During track association, do a selection of positive and negative track with respect their dca, in order to remove fake association
- $\Delta dca = dca_{pos} dca_{neg}$

Rough efficiency

- we have 950 files*400 D0's = 380000 possibles D0's (pure sample)
- next plots : for I file (400 D0's possibles)

η cut that has to be fixed if using Si hits

solid line: positive

φ cut that has to be fixed if using Si hits

σ_{dca}^{xy} that can be used if using Si hits

Fitted value of par[2]=Sigma

σ_{dca}^{z} that can be used if using Si hits

Fitted value of par[2]=Sigma

Fit exponential

positive and negative with less than 3 Silicon hits

exponential fit p0*exp(p1*x)

gaussian fit

Fit exponential

 positive and negative with more (or) than 3 Silicon hits

exponential fit p0*exp(p1*x)

gaussian fit